On Graduated Optimization for Stochastic Non-Convex Problems

نویسندگان

  • Elad Hazan
  • Kfir Yehuda Levy
  • Shai Shalev-Shwartz
چکیده

The graduated optimization approach, also known as the continuation method, is a popular heuristic to solving non-convex problems that has received renewed interest over the last decade. Despite being popular, very little is known in terms of its theoretical convergence analysis. In this paper we describe a new first-order algorithm based on graduated optimization and analyze its performance. We characterize a family of non-convex functions for which this algorithm provably converges to a global optimum. In particular, we prove that the algorithm converges to an ε-approximate solution within O(1/ε) gradient-based steps. We extend our algorithm and analysis to the setting of stochastic non-convex optimization with noisy gradient feedback, attaining the same convergence rate. Additionally, we discuss the setting of “zeroorder optimization”, and devise a variant of our algorithm which converges at rate of O(d/ε).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Variance Reduction Gradient for a Non-convex Problem Using Graduated Optimization

In machine learning, nonconvex optimization problems with multiple local optimums are often encountered. Graduated Optimization Algorithm (GOA) is a popular heuristic method to obtain global optimums of nonconvex problems through progressively minimizing a series of convex approximations to the nonconvex problems more and more accurate. Recently, such an algorithm GradOpt based on GOA is propos...

متن کامل

Stochastic Successive Convex Approximation for Non-Convex Constrained Stochastic Optimization

This paper proposes a constrained stochastic successive convex approximation (CSSCA) algorithm to find a stationary point for a general non-convex stochastic optimization problem, whose objective and constraint functions are nonconvex and involve expectations over random states. The existing methods for non-convex stochastic optimization, such as the stochastic (average) gradient and stochastic...

متن کامل

Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems

The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...

متن کامل

GNCGCP - Graduated NonConvexity and Graduated Concavity Procedure

In this paper we propose the Graduated NonConvexity and Graduated Concavity Procedure (GNCGCP) as a general optimization framework to approximately solve the combinatorial optimization problems on the set of partial permutation matrices. GNCGCP comprises two sub-procedures, graduated nonconvexity (GNC) which realizes a convex relaxation and graduated concavity (GC) which realizes a concave rela...

متن کامل

Asynchronous Stochastic Proximal Methods for Nonconvex Nonsmooth Optimization

We study stochastic algorithms for solving non-convex optimization problems with a convex yet possibly non-smooth regularizer, which nd wide applications in many practical machine learning applications. However, compared to asynchronous parallel stochastic gradient descent (AsynSGD), an algorithm targeting smooth optimization, the understanding of the behavior of stochastic algorithms for the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016